Практическая работа «Применение радиоактивных изотопов»

Задание:

Заполнить таблицу «Применение радиоактивных изотопов»:

Область применения	Цель применения

Радиоактивные изотопы в биологии и медицине.

Одним из наиболее выдающихся исследований, проведенных с помощью меченных атомов, явилось исследование обмена веществ в организмах. Было доказано, что за сравнительно небольшое время организм подвергается почти полному обновлению. Слагающие его атомы заменяются новыми.

Лишь железо, как показали опыты по изотропному исследованию крови, является исключением из этого правила. Железо входит в состав гемоглобина красных кровяных шариков. При введении в пищу радиоактивных атомов железа $^{59}_{26}Fe$ было обнаружено, что они почти не поступают в кровь. Только в том случае, когда запасы железа в организме иссякают, железо начинает усваиваться организмом.

Если не существует достаточно долгоживущих радиоактивных изотопов, как, например, у кислорода и азота, меняют изотопный состав стабильных элементов. Так, добавлением к кислороду избытка изотопа $^{18}_{\ 8}O$ было установлено, что свободный кислород, выделяющийся при фотосинтезе, первоначально входил в состав воды, а не углекислого газа.

Радиоактивные изотопы применяются в медицине как для постановки диагноза, так и для терапевтических целей.

Радиоактивный натрий, вводимый в небольших количествах в кровь, используется для исследования кровообращения.

Йод интенсивно отлагается в щитовидной железе, особенно при базедовой болезни. Наблюдая с помощью счетчика за отложением радиоактивного йода, можно быстро поставить диагноз. Большие дозы радиоактивного йода вызывают частичное разрушение аномально развивающихся тканей, и поэтому радиоактивный йод используют для лечения базедовой болезни.

Интенсивное у-излучение кобальта используется при лечении раковых заболеваний.

Изотопы служат для изучения миграции рыб и качества удобрений, развития живого организма и движения ила в устьях реки.

Радиоактивные изотопы в промышленности.

Не менее обширны применения радиоактивных изотопов в промышленности. Одним из примеров этого может служить следующий способ контроля износа поршневых колец в двигателях внутреннего сгорания. Облучая поршневое кольцо нейтронами, вызывают в нем ядерные реакции и делают его радиоактивным. При работе двигателя частички материала попадают в смазочное масло. Исследуя уровень радиоактивности масла после определенного времени работы двигателя, определяют износ кольца.

Радиоактивные изотопы позволяют судить о диффузии металлов, процессах в доменных печах и т.д. Мощное γ-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них дефектов.

Области использования изотопов многочисленны: определение качества отливок и сварных швов, расхода и скорости течения жидкости. С их помощью определяют течи в подземных трубопроводах, качество смешивания различных материалов, толщину и надежность лаковых покрытий.

Радиоактивные изотопы в сельской местности.

Все более широкое применение получают радиоактивные изотопы в сельском хозяйстве. Облучение семян растений (хлопчатника, капусты, редиса и др.) небольшими дозами ү-лучей от радиоактивных препаратов приводит к заметному повышению урожайности.

Большие дозы радиации вызывают мутации у растений и микроорганизмов, что в отдельных случаях приводит к появлению мутантов с новыми ценными свойствами (радиоселекция). Так выведены ценные сорта пшеницы, фасоли и других культур, а также получены высокопродуктивные микроорганизмы, применяемые в производстве антибиотиков. Гамма излучение радиоактивных изотопов используется также для борьбы с вредными насекомыми и для консервации пищевых продуктов.

Шпак С.И. «Сборник практических работ»

Широкое применение получили меченные атомы в агротехнике. Например, чтобы выяснить, какое из фосфорных удобрений лучше усваивается растением, помечают различные удобрения радиоактивным фосфором $^{32}_{15}P$. Исследуя затем растение на радиоактивность, можно определить количество усвоенного ими фосфора из разных сортов удобрения.

Радиоактивные изотопы в археологии.

Интересное применение для определения возраста древних предметов органического происхождения (дерева, древесного угля, тканей и т.д.) получил метод радиоактивного углерода. В растениях всегда имеется β -радиоактивный изотоп углерода $^{14}_{6}C$ с периодом полураспада T=5700 лет. Он образуется в атмосфере Земли в небольшом количестве из азота под действием нейтронов. Последние же возникают за счет ядерных реакций, вызванных быстрыми частицами, которые поступают в атмосферу из космоса (космические лучи).

Соединяясь с кислородом, этот углерод образует углекислый газ, поглощаемый растениями, а через них и животными. Один грамм углерода из образцов молодого леса испускает около пятнадцати β-частиц в секунду.

После гибели организма пополнение его радиоактивным углеродом прекращается. Имеющееся же количество этого изотопа убывает за счет радиоактивности. Определяя процентное содержание радиоактивного углерода в органических остатках, можно определить их возраст, если он лежит в пределах от 1000 до 50 000 и даже до 100 000 лет. Таким методом узнают возраст египетских мумий, остатков доисторических костров и т.д.