Справочные таблицы для выполнения практических работ

№1

Приставка	Числовое значение	Сокращенное обозначение
Атто	10 ⁻¹⁸	a
Фемто	10 ⁻¹⁵	ф
Пико	10 ⁻¹²	П
Нано	10-9	Н
Микро	10-6	МК
Милли	10-3	M
Санти	10-2	С
Деци	10-1	Д
Дека	10^{1}	да
Гекто	10^{2}	Γ
Кило	10^{3}	К
Мега	106	M
Гига	109	Γ
Тера	10 ¹²	T

Постоянные величины

№2

Ускорение свободного падения	$g=9.8 \text{ m/c}^2$
Универсальная газовая постоянная	R=8,31Дж/(К*моль)
Диэлектрическая постоянная	$\varepsilon = 8.85*10^{-12} \Phi/M$
Постоянная Планка	h=6,63*10 ⁻³⁴ Дж*с
Скорость света в вакууме	$c=3*10^8 \text{M/c}$
Заряд электрона	e= -1,6*10 ⁻¹⁹ Кл
Заряд протона	р=1,6*10 ⁻¹⁹ Кл
Масса электрона	m=9.1*10 ⁻³¹
Масса протона	m=1,67*10 ⁻²⁷ кг

Допустимое ускорения на железнодорожном транспорте-1м/ c^2 . Ускорение, при котором пассажир не испытывает дискомфорта-1.5м/ c^2

Замедления при торможении

№3

Тормоза	Замедление
Пневматические	0.7m/c^2
Электротормоза (рекуперативный и	0.9 m/c^2
реостатный способы торможения)	
Магниторельсовые	$1,1 \text{m/c}^2$
В перспективе	До 1,6м/c ²

Радиусы закругления

Скорость	Радиус закругления
100 км/ч	Более 600м
160 км/ч	Более 1500м
200 км/ч	Более 2,5 км
250 км/ч	Более 4 км

Постоянные величины

№5

Ускорение свободного падения	$g=9.8 \text{ m/c}^2$
Универсальная газовая постоянная	R=8,31Дж/(К*моль)
Диэлектрическая постоянная	$\varepsilon = 8.85*10^{-12} \Phi/M$
Постоянная Планка	h=6,63*10 ⁻³⁴ Дж*с
Скорость света в вакууме	$c=3*10^8 \text{m/c}$
Заряд электрона	e= -1,6*10 ⁻¹⁹ Кл
Заряд протона	р=1,6*10-19Кл
Масса электрона	m=9.1*10 ⁻³¹
Масса протона	m=1,67*10 ⁻²⁷ кг

Диэлектрическая проницаемость среды є

№6

Вещество	Диэлектрическая проницаемость
Вакуум	1
Винипласт	3,5
Вода	81
Воздух	1
Керосин	2,1
Масло	2,5
Парафин	2
Слюда	6
Стекло	6
Тектолит	7

Удельное сопротивление металлов ρ*10⁻⁶Ом*м

№7

Металл	Удельное сопротивление
Алюминий	0,028
Вольфрам	0,055
Свинец	0,21
Серебро	0,016
Латунь	0,071
Железо	0,1
Медь	0,017
Сталь	0,15
Константан	0,5
Никелин	0,4
Нихром	1,1

Температурный коэффициент сопротивления, $K^{\text{-}1}$

Вещество	Температурный коэффициент сопротивления
Алюминий	0,004
Вольфрам	0,005
Латунь	0,001
Медь	0,004
Никелин	0,0001
Нихром	0,004
Платина	0,004

Ртуть	0,0009
Свинец	0,004
Серебро	0,004
Сталь	0,006
Фехраль	0,0002

Электрохимический эквивалент, мг/Кл

№ 9

Вещество	Электрохимический эквивалент
Алюминий	0,093
Железо	0,289
Золото	0,68
Кислород	0,0829
Никель	0,304
Свинец	1,074
Серебро	1,118
Водород	0,01045
Натрий	0,238

Значения синусов и косинусов углов

№10

Угол	sin	cos
30^{0}	0,5	0,867
45^{0}	0,71	0,71
60^{0}	0,867	0,5
90^{0}	1	0

Плотность, $\kappa \Gamma/M^3$

№ 11

Вещество	Плотность, кг/м ³
Глицерин	1260
Вода	1000
Керосин	800
Спирт	800
Эфир	710

Коэффициент поверхностного натяжения, 10-3 Н/м

№12

Вещество	Коэффициент поверхностного натяжения, 10 ⁻³ Н/м
Глицерин	64
Вода	73
Керосин	24
Спирт	22
Эфир	17

Психрометрическая таблица

,	Nº 13											
	Показание сухого термометра,	Разность показаний сухого и влажного термометров,										
	⁰ C.	${}^{0}\mathrm{C}$										
		0	1	2	3	4	5	6	7	8	9	10

	Относительная влажность, %										
0	100	81	63	45	28	11	-	-	-	-	-
2	100	84	68	51	35	20	-	-	-	-	-
4	100	85	70	56	42	28	14	-	-	-	-
6	100	86	73	60	47	35	23	10	-	-	-
8	100	87	75	63	51	40	29	18	7	-	-
10	100	88	76	65	54	44	34	24	14	4	-
12	100	89	78	68	57	48	38	29	20	11	-
14	100	90	79	70	60	51	42	34	25	17	9
16	100	90	81	71	62	54	45	37	30	22	15
18	100	91	82	73	65	56	49	41	34	27	20
20	100	91	83	74	66	59	51	44	37	30	24
22	100	92	83	76	68	61	54	47	40	34	28
24	100	92	84	77	69	62	56	49	43	37	31
26	100	92	85	78	71	64	58	51	46	40	34
28	100	93	85	78	72	65	59	53	48	42	37
30	100	93	86	79	73	67	61	55	50	44	39

Показатель преломления веществ

*№*14

Алмаз	2,42	Плексиглас	1,5
Вода	1,33	Сероуглерод	1,63
Воздух	1	Скипидар	1,47
Глицерин	1,47	Спирт этиловый	1,36
Кварц	1,54	Стекло	1,8

Работа выхода, эВ

*№*15

Алюминий	2,74	Медь	4,47
Висмут	4,62	Молибден	4,27
Вольфрам	4,5	Натрий	2,27
Железо	4,36	Никель	4,84
Золото	4,58	Платина	5,29
Калий	2,15	Серебро	4,28
Кобальт	4,25	Цезий	1,89
Литий	2,39	Цинк	3,74

Массы некоторых изотопов, а.е.м.

Элемент	Изотоп	Macca
Водород	$_{1}{}^{1}\mathrm{H}$	1,00783
	₁ ² H	2,01410
	₁ ³ H	3,01605
Гелий	$_2$ ³ He	3,01603
	$_2{}^4\text{He}$	4,0026
Литий	₃ ⁶ Li	6,01513
	$_3$ ⁷ Li	7,01601
Бериллий	$_4{}^8\mathrm{Be}$	8,00531
	$_4{}^9\mathrm{Be}$	9,01219
Бор	5 ¹¹ B	11,0093
Азот	7^{14} N	14,00307

Углерод	6 ¹² C	12
	6 ¹³ C	13,00335
Кислород	8 ¹⁶ O	15,99491
Фтор	9 ¹⁹ F	18,99843
Алюминий	13 ²⁷ Al	26,98153
Фосфор	$_{15}{}^{30}P$	29,97867
Радон	₈₆ ²²² Rn	222,01922
Радий	₈₈ ²²⁶ Ra	226,02435
Уран	$_{92}^{235}{ m U}$	235,04299
	$_{92}^{238}{ m U}$	238,05006
Нептуний	93 ²³⁷ Np	237,04706
Плутоний	₉₄ ²³⁹ Pu	239,05122